Bit Level Types

David T Eger (eger@cs.cmu.edu)
Carnegie Mellon University
School of Computer Science

Pittsburgh, PA 15213

March 25, 2005

Abstract

We present a language (BLT) for specifying binary
formats through a collection of types. BLT specifica-
tions can describe both files (e.g., JPEG, ELF, MIDI)
and network packets (e.g., IP, TCP, X). By writing
a BLT specification for a format, we create a formal
definition of what a valid instance of the format is.
Further, a BLT specification provides enough infor-
mation to generate parsers and encoders to mediate
between the raw binary format and its canonical em-
bedding in a user’s programming language of choice,
thereby eliminating the error-prone process of writing
such code by hand.

1 Introduction

To share information, we rely on standard data for-
mats: many are text-based (e.g., XML, HTML, C,
RTF). Just as many data formats are based on bit-
and byte-level information packing, both for files
(e.g., JPEG, ELF, MIDI), and for network packets
(e.g., IP, TCP, X). Keeping track of endianness, bit-
ordering, alignment, and other issues of data valida-
tion is a laborious and error-prone task. Further, get-
ting this job of parsing and encoding low-level data
formats wrong can have disastrous consequences: In
the fall of 2004, broken JPEG parsers in the Windows
and Mozilla codebases were found which allowed an
attacker to run arbitrary attacker-supplied code on a
user’s computer [17, 16]. Since 2002, the Ethereal
network packet analyzer—a standard security tool
which is mainly low-level parsing code—has had over
three dozen reported vulnerabilities [15].

Why are there so many defects in code dealing
with low-level formats? There are two main prob-
lems: (1) low-level formats are often specified by an

informal mix of prose and figures, and (2) the imple-
mentations of parsers and encoders for these formats
are most often hand-coded in C.

Here we present a language for precisely specifying
binary formats through types. To be of direct use to
a programmer, BLT needs a binding for her program-
ming language of choice (C, SML, Java, etc.). A back-
end takes a BLT specification and generates a set of
types in the target language that best represents the
binary format, along with parsers and encoders which
mediate between instances of the binary format and
their corresponding representation in the target lan-
guage. These parsers and encoders take care of endi-
anness, bit-packing, re-boxing, and re-tagging under-
the-hood so an application programmer is freed from
worrying about the low-level details.

In addition to ease-of-use, BLT has been de-
signed with security in mind. BLT-generated parsers
and encoders calculate with infinite precision integer
arithmetic and have no fixed buffers. As a result,
these routines are immune from exploits based on
buffer overflow, integer underflow, and integer over-
flow. Further, data validation and error-handling
code which might otherwise have been over-looked
in the tedium of writing low level parsing code is au-
tomatically generated from the data specification.

2 Binary Formats Are Different

With extensive literature on parsing regular and con-
text free languages, it is natural to ask what makes
binary formats different. After all, if we can accom-
plish our task with Lex and Yacc, then we might do
well not to design a new language.

To help guide our discussion, let us pin down a few
low level formats we would like to describe with BLT:

the X Protocol [20], the JFIF/JPEG format [13], and
the Macromedia Flash File Format [8].

What sort of notions might we find in a low
level format? We could encounter a zero-terminated
ASCII string, which we’ll represent in BLT as:

CString =

struct
str : (u8 where $! != 0) list,
null : u8 where$! = 0

tcurts

Here, $! should be read as “the current value be-
ing transformed by the active ¥ type (u8 in both
instances)” In the first expression, $! stands for an
element of the list; in the second expression $! is syn-
onymous with the value of the null field. u8 means
an 8-bit unsigned integer.

This particular example provides no challenges to
the standard language heirarchy: it is a simple regu-
lar expression: ([*\0])*[\0]. Further, constructs like
the C string do occur in formats we are consider-
ing. Macromedia’s Shockwave Format (SWF), has
a control tag NamedAnchor, which contains a null-
terminated string (and no length field). The JPEG
format has a more elaborate variant on a C string:
so-called “entropy-coded segments” which are termi-
nated with a marker of the form 0xFF 0xYY where
0xYY # 0x00. This we could write in BLT as':

ECS_Datum =
union
NON : u8 where$! != O0xFF,
ENT : u8 list(2) where $!.(1) = 0,
noinu
EntropyCodedSegment
= ECS_Datum list asa u8 list

Alternatively, it’s just as common to see a variant
on Pascal strings: that is, a data type where you have
an integer n specifying the length of a list of things
that follows. We view this as a form of dependent
typing since part of the type definition depends on a
runtime value: n. To exemplify: Every request and
reply packet in the X Protocol has a length field indi-
cating the packet’s length. JPEG segments which are
not entropy-encoded also have length fields. Though
in these two formats the length fields are simple 16-bit
integers, this is not always the case. In Shockwave,

a rectangle is specified as a 5-bit integer n followed
by four integers, each of length n. We would express
Shockwave’s rectangle type RECT in BLT as? :

RECT =

struct
n : uint(5),
rmin : uint(n),
rmax : uint(n),
ymin : uint(n),
ymaz : uint(n)

tcurts

These examples give several reasons why classi-
cal language descriptions fall apart. First, we are
interpreting part of our data stream not as a simple
symbol to determine the next machine state, but as
an integer value. Our specifications can refer to these
values and also to the structure of previously parsed
data. So for example, we can recognize strings of the
language a"b"c"d"e™ with the BLT specification?:

ABCDE =
struct
A: (u8 = ’a’) list,
B: (u8 = ’b’) list(length(A)),
C: (8 = ’c’) list(length(A)),
D: (u8 = ’d’) list(length(A4)),
E: (8 = ’e’) list(length(A))
tcurts

whereas no regular expression, context-free grammar,
or tree-adjoining grammar can. Second, the symbols
of the languages we are interested in are not all the
same size: something RECT puts in bold relief.

Another notion peculiar to low level formats is
the representation of integer values. We must spec-
ify both the integer length, whether it is an unsigned
or signed value, and its endiannesss. Further, each
of these properties of any particular field may be de-
pendent upon a previous field. In the X protocol, for
instance, endianness of the integer fields for a session
is determined by the value of a byte in the client’s
first packet.

While other specification languages have at-
tempted to capture the needed qualities for describing
binary formats, most fall short: (1) none of them han-
dle dependent endianness cleanly, (2) most of them
do not handle dependent typing constructs, (3) most
depend on the dangerous arithmetic semantics of the

1You may be curious about what asa does. It lets us verify some properties of data using one type, and then “forget” that
type and re-interpret the parsed data as some other type, a value of which it passes to the programmer

2Here we admit that u8 in our first example was shorthand for uint(8).

3Here we use some syntactic sugar so that we don’t have to write out “ where $!” for exceptionally simple where-clauses

target language, (4) many only provide for parsing,
but not for round-trip data transformation and (5)
several languages give up declarativity in favor of
generality, leaving the semantics to the programmer.
Languages that we quibble with on this last point re-
sult in specifications (if one can even call them that)
which have ambiguous data projections and a hap-
hazard, error-prone structure.

3 Guiding Principles

Certain principles have guided our design choices for
BLT:

1. BLT should be well-defined.

2. The types specified in BLT should map cleanly
to SML and C.

3. BLT specifications should be short and clean.
4. Parsed data should be ready-to-use.

5. Our parsers and encoders should do as much
data validation as reasonable.

6. We should use taste in determining the gener-
ated parsers’ level of complexity: as a reference,
we should try to keep the generated parsing rou-
tines to linear time. XXX linear? really?

Not all of these points are orthogonal. Doing full
data validation may be very expensive, as may mak-
ing data ready-to-use: consider specifications which
describe lists of primes or compressed data. In light
of the trade-offs involved, designing a good language
for this niche requires a certain sense of good taste.

4 The Big Picture

The main expressions of interest in BLT are those
which define bijections between valid instances of a
specified binary format and valid projections of said
instances into a target programming language. Such
an expression defines a ¥ type. Let us look at a small
example of such an expression:

struct
n : ul6/le wheren < 1024,
arr : ul6/le list(n)
tcurts

This expression defines a ¥ type that stands for
relatively short lists of integers: we have an unsigned

16-bit little-endian length field n, whose where-clause
tells us that it must be less than 1024. After n fol-
low n more unsigned 16-bit integers comprising the
contents of the list. A question arises as to what lan-
guage the expression “n < 1024” is evaluated within.
It is tempting to define the expressions used in where-
clauses to simply be terms of the target program-
ming language. This is the design choice of Yacc.
Yacc relies on the programmer to create and piece to-
gether a suitable data structure through a sequence of
calls to various semantic actions during parsing. In
contrast, our specifications have declarative seman-
tics: the types corresponding to the low-level data
are well-defined by the specification itself. In ad-
dition to this design goal difference, we argue that
relying on the target language is bad for two rea-
sons: (1) It makes a data specification unnecessarily
brittle and dependent upon a specific programming
language, and (2) Relying on the semantics of most
programming languages for integer arithmetic is gen-
erally a losing gambit. We go into these motivations
in great detail in §8.1.

For BLT, we introduce a small language for ex-
pressions which we will use as the language for where-
clauses: one whose syntax for arithmetic expressions
is reminiscent C and whose syntax for other datatypes
is reminiscent of ML.

The core of our language is our collection of intro-
duction forms for ¥ types, which we define in §5.1-
5.10. Before we begin, though, we need to decide the
relationship between the ¥ types we are defining and
what we will call that type’s shadows.

Let v be a ¥ type. Then v’s shadows are the
projections of said type into the programming lan-
guage at hand (the first-projection) and into the ex-
pression language used in BLT (the exp- or second-
projection). We refer to them as shadows because
they are versions of the type v where we have lost
type information. Our notation for these projections
of a ¥ type v will follow that of physicists for first
and second derivative: ¥, ¥. In the first projection
we lose information about endianness and about re-
strictions on values. Where we might have specified a
type v to be a list of non-zero 16 bit little-endian inte-
gers, ¥ would only tell us that we have a list of 16 bit
integers (actually, the implementation may use any
integral type large enough to hold all values). The
second projection ¥ would tell us only that we have
a list of integers.

We purposely hold the first projection somewhat
abstract, as it is the means by which we bind BLT

specifications to different programming languages.
The exact details of the first projection are deter-
mined by the binding definition for a specific pro-
gramming language.

The second projection, however, is part-and-
parcel of our expression language, and we define it
precisely as we describe the introduction forms for ¥
types.

As we define our ¥ type constructors—especially
for sum types—we’ll find it useful to refer to Benjamin
Pierce’s formalism of lenses [6]. Pierce deals with a
more general problem than ours: one where a con-
cretization may not fully represent the abstract type,
but we can still use his ideas to great benefit.

We can interpret a ¥ type v as a set of two lenses
vs : bs = ¥ and vy : ¥ = ¥ mediating between the
abstract type ¥, and two concretizations: bit strings
(of type bs) and ©.

A lens [is made of two functions: ["c¢c = a (the
GET function) and I\,a = ¢ (the PUTBACK function)
which mediate between the concrete and abstract rep-
resentations. These may be partial functions, and we
say that f ¢ = L if f is undefined at ¢, and that f C g
ffe=gaVfzx=_1"forallz.

Pierce defines well-behaved lenses by essentially re-
quiring that they form bijections:

IN(/¢) C e GETPUT
I,/(INa) Ta PUTGET

The programming language bindings for BLT are
direct embeddings of our abstract data types, so v
trivially enforces the GETPUT and PUTGET laws.
When we come to the section on unions, we will dis-
cuss the implications of adhering to the GETPUT and
PUTGET laws for the lenses connecting S with A.

For every WU type v, we create two functions parse,,
and unparse,,, which we can define as follows:

parse, = vr \,0vs,/ :bs — ¥

unparse, = vs\,ovr,/ : U — bs

5 WV Type Expressions in BLT

5.1 Base Types

We have two kinds of base types: integer and float-
ing point. The integer types are the only interesting
ones, however: no expressions in BLT may refer to
floating point values.

Our integral base types are all based on unsigned
or two’s complement signed binary arithmetic in some

number of bits n: uint(n), uintle(n), sint(n), and
sintle(n).

The ultimate underlying primitive from which we
extract raw binary data is a bit stream. If the run-
time system instead provides low-level access in the
form of a byte stream, we take the high bit of the
first byte as bit 0, the high bit of the second byte as
bit 8 and so on. This corresponds to reading integers
from the stream as big-endian.

uint(8) takes the next 8 bits of the bit stream,
most significant bit first, and returns them as a sin-
gle value from 0..255 (decimal). Similarly, uint(4)
returns a nybble of the next 4 bits.

uintle(32) takes the next 32 bits, and does a
little-endian ’byte swap’, putting the first 8 bits as
the ’low byte’, the next 8 bits as the next lowest
byte, and so on. After the byte swap, the bits are
interpretted as a single 32 bit unsigned value.

The argument to uintle must be one of
(8,16,32,64). sint(n) and sintle(n) are defined sim-
ilarly to uint(n) and uintle(n).

Our floating point types are based on IEEE 754
standard 32 bit and 64 bit, referred to as float32,
float32le, float64 and float64le.

Below is an example of how the base types might
project into C:

v 0 (in C) 0]

uint(8) unsigned char int
uint (12) unsigned short int
uint (32) unsigned int int
uintle(32) unsigned int int
uint (64) unsigned long long int

5.2 Record Types

Though we say “record types,” these are not plain
record types in the classical sense. We may have an
integer n as a field in our record and have a subse-
quent field which is a list of n uint(16)’s. In such
a manner, the type of any field may refer to previ-
ously parsed variables, so there is a bit of implicit
dependent-typing here in our notion of record.

The syntax for defining a ¥ record type is:

struct

v1 : T where ref—expq,

Vg : T Where ref—exp,,

v3 : T asbits [vg1 : 73,1, V3,2 : T3,2] where ref—ezps
tcurts

Now wv; are variable names, 7; are expressions
defining a ¥ type, and ref—ezp, are expressions which

evaluate to a boolean. These expressions are eval-
uated in the contexts: T mapping variables to (V)
types and « mapping variables to values. T' and ~y
must agree in the following manner: If 'v = y then
YUY

Let I'y and vy be the contexts at the beginning
of the record definition. Then the refinement ex-
pression ref—exp, is evaluated in the context where

v =v U{{v1,¢), (8!, ¢),(Ql, B),(Q.!,b)}, where:
e c is the parsed value of type 71
e B is the byte-offset into the current record

e b is the bit-offset into the current record

and I' = T'o J{(v1, 71), (8!, 71) , (@Q!,u8) , (Q.],u8) }

To is evaluated in the same context as ref—ezp;
(with the values B and b updated and $! removed).
ref—exp, is evaluated in the context of 7 with vy and
$! bound to a value of type 7.

Now let’s examine the third declaration, which is
slightly different from the other two.

T asbits ['[)3’1 1731, V32! ’7'372]

This declaration takes an integer type and reinter-
prets it as a set of bitfields. This is needed so we can
accomplish little-endian re-ordering of the bit stream
before slicing off bit fields. The contexts for parsing
the variables vs1 : 731, v32 : T32 takes place ex-
actly as it would have had we inlined this list into the
containing strucuture, striking “vs : 7 asbits [” and
“] where ref—exp;” entirely. The only change here is
which bits become v3; and v3 2. As syntactic sugar,
we may omit the type annotation for a bit field, in
which case the type uint (1) is assumed.

ref—exp, is evaluated in a context where v3 = $!
and vz ; are all bound to values of type 7 and 73;
appropriately.

We find the first shadow of a type pointwise. If
we name the record type above R, then
R: struct

U1 2’7.'17 '1)227.'2, '1}327.',
V3,1 73,1, V3,2 732, U33:733
tcurts

There are a few more details concerning record
types: recall that one of our main purposes is to keep
the gritty details of low-level data layout and tagging
out of our programmer’s hair.

We may qualify a subset of the fields of a struct
as implicit. This means that, given the original ¥
type and the non-implicit fields of the struct, we
can reconstruct the original sequence of bits in full
(with the exception of any dontcare fields).

If we can make a field implicit, we can forgo
giving it a name completely by replacing its name
with the wildcard (an underscore _). A field with
a wildcard name has its type implicitly marked as
implicit.

Any fields in a record type v marked as implicit
will not appear in any of v’s shadows. Nevertheless,
it is legal to reference a wildcard field within its type
refinement via the $! binding, and it will be legal to
reference an implicit (but not a dontcare) vari-
able (1) in the parsing stage since we have just parsed
it and (2) in the encoding stage since implicit
promises that we can reconstruct the value.

XXX: Note: implicit s going to be a lot eas-
ier to implement if we require the user to simply
write a function to compute it from the other (non-
implicit) fields.

Finally, we may sometimes want a short-hand
form for the field name v;. In this case, we can re-
place v; with v; aka foo and then use foo wherever
we would have used v;.

5.3 Sum Types

union
NAME; : 1y
NAME; :
NAMEs : 13

noinu

Sum Types are discriminated in the parse stage
similarly to ML pattern matching: that is, the order
in which the clauses appears does matter. All of the
branches of a union must have distinct names. The
evaluation of any where clause of 7; can expect to
have values for NAME; and $! bound as in the case
of struct, but as this is pure alternation, there will be
no bindings from the other NAM Es.

5.4 Lists of Unknown Length

|7 list

Here 7 must use $! if it is a refinement type. For
instance the following is a legitimate definition of a
C string.

struct
str :
null

tcurts

(u8 where $! != 0) list
u8 where $! = 0

Whenever a 7 1list is given in a BLT specifica-
tion, if it is followed by anything, the type that follows
it must be distinguishable from a value of type 7. See
the section on distinguishability

5.5 Lists of Known Length

’ T list(n) ‘

As opposed to the previous kind of list, lists of
this sort take a Psi type 7 and a non-negative integer
n as arguments, and parse a sequence of n objects of

type 7.

5.6 Where-Clauses of U type

XXX WARNING: This section is rough, as is the sec-
tion on Psi-Dependent Types inso far as parametric
polymorphism

We may specify a ¥ type in the context of some
set of exp- and W-type bindings through something
which has the same syntax as a where-clause: that is,
a where-clause whose branches all result in ¥ types.
Since we are targetting a language with a static type
system, each branch of the where-clause must evalu-
ate to ¥ type that projects onto the same data type
in the programming language.

A question arises then, as to what sorts of these
expressions are admissible in our type specifications
as describing valid ¥ types.

As a first example, consider the case where we
have a session of the X Protocol. The first packet
will determine if we send our data as big-endian or
little-endian, and we will capture this piece of infor-
mation as a value of type XEndianness as follows:

union
BIG : u8 where BIG = 'B’,
LITTLE : u8 where LITTLE = T
noinu

The ¥ type of all other packets will depend on
knowing this runtime wvalue. That is, all of the
other X packet types will be parameterized by a
value of XEndianness. As a first step to de-
scribing these packets, let us describe a 16 bit in-

teger dependent a value e of type XEndianness:
case e

of BIG => ul6/be
| LITTLE => ul6/le

If we restrict all type expressions so that their second
projections are equal, then a fully parametric type
would not be admissible. Can we resolve this con-
flict?

If we choose branch expressions to be admissible
only if their second projections are equal, the only dif-
ferences that may exist are the actual values parsed
(and hence the lengths of lists and bitfields), and the
integer endian-ness. Therefore expressions like this
should be illegal:

if n < 20
then LinkedList
else HashTable

since the fundamental datatypes will clearly not
be encoded as the same exp type. So even though
it might be convenient to have such an object, it is
not allowed directly. You would have to represent it
instead as a tagged union.

One way to allow parametric polymorphism would
be to allow expressions like that for a Option only if
they resolved at compile time — that is, only if they
were syntactic sugar.

So you could have a Psi-Dependent type construc-
tor:

Directions(t int) = t withvalues
[NORTH = O, EAST = 1, SOUTH = 2, WEST = 3]

However, this could only be used within a speci-
fication as a a specific instantiation:

e.g. Directions(u8) or Directions(ulé/le).

5.7 Refinement Types

T where ref—ezp

The only difference between this and the version
that appeared as part of a record is that here we only
have $! bound, and we don’t have the other fields of
the record to reference.

5.8 exp-Dependent Types

tycon_name(foo : 7) = tyexp

tycon name(fooval) = tyexp

tyexp here is any Psi type expression evaluated in

a context where. The typing context for tyexp binds
foo to a value of type 7

5.9 Psi-Dependent Types

(exp-Dependent Intro)
(exp-Dependent Elim)

tycon(t) = tyexp
tycon(t :: expty) = tyexp
tycon(psity)

(Psi-Dependent Intro 1)
(Psi-Dependent Intro 2)
(Psi-Dependent Elim)

It might also be useful to have a parametric type «
Option, which we could use within other structures.

tyexp here is any Psi type expression evaluated
in a context where t is known to be a Psi type.

expty demands some explanation. The idea, is,
one needs to be able to express which Psi Types are
allowable. If you are building an Option(t), you can
have t be any Psi type. However, if you are expecting
to compare your object to an integer, then you should
be able to say you allow only those Psi types whose
exp-shadows are integers. Similarly, you can imagine
copying the syntax for describing Psi types only re-
placing all of the base types with integer. These are
the exp type descriptions.

5.10 Reinterpreted Types

t_1 asa t_2

The idea here is that t; does some checking of the
data, and then passes off the data to be interpreted
as a different type. As an example, if we know that
a comment field is a certain size, and that it contains
a UTF8 string, we might have the following declara-
tion:

JPEGHeader =
struct

n : ul6/be,
comment : u8 list(n-2) asa UTF8String

tcurts

5.11 The dontcare Qualifier

Any type which has no restrictions on the val-
ues parsed from the bit stream may be marked as
dontcare. This means that any value is acceptable,
and that we do not need to save the underlying data
when we project it into our programming language.
Any types marked as dontcare which appear within
a record are implicitly marked as implicit.

5.12 Derived Forms
1. We have the following shorthand for arithmetic
types:
u8 = uint(8)
ul6/be = uint (16)
ul6/le = uintle(16)
u32/be = uint (32)
u32/le = uintle(32)
u64/be = uint (64)

ub4/le = uintle(64)

s8 = sint(8)

s16/be = sint (16)
s16/1le = sintle(16)
s32/be = sint (32)

s32/1e = sintle(32)
s64/be = sint(64)
s64/1le = sintle(64)

2. 7 withvalues [I; =v1,l2 = v2,l3 = v3]

This is the BLT equivalent of a C-style enum.
t indicates how many bits we use to form each
integer. (t’s shadow must be an integer type).
The [; are labels, and the v; are integer values.
This is equivalent to the construct:

fresh_tycon_name(f :: int) =

union
1 : f where $§! = v
Iy : f where $! = v,
I3: f where $! = w3
noinu

fresh_tycon_name(t)

3. Omission of “ where $!”:

If there is a context where we may expect a re-
finement clause, and instead of where ref—exp,
we read an arithmetic comparison opera-
tor op, we assume that the user meant
where $lop

Hence, we can write the following:
nz:u8!= 0
instead of the much more verbose

nz : u8 where §! 1= 0

6 The Round-Trip Problem

7 VU Type Names and Type
Equality

Most of the time, naming a ¥ type is just short-hand
for writing the type out in full. We may want to
allow a form of opaque naming, so we could for in-
stance distinguish u32s which are File Handles and
u32s which are Graphics Contexts.

8 The Expression Language

Here we provide the syntax and semantics for BLT’s
where-clause expressions.

8.1 Why Bother?

Any one who has used a parser generator may at this
point ask an obvious question: Why not simply use
snippets of code from the target language whenever
something interesting is parsed? One might choose
this option for a number of reasons: (1) some data is
in a format not usably mapped to our programming
language by a ¥ type, (2) we don’t need to have a
full translation of the data, or (3) using the target
language means we need not write a new language
for normal things like arithmetic expressions.

The first reason here is sensible; BLT was de-
signed to re-box and re-tag dependent low-level lay-
outs. We cannot use BLT to automatically gener-
ate a pixmap from a JPEG file, for instance. What
BLT does provide, however, is a sensible interpreta-
tion of the overall layout of a JPEG file: we present
the user with a sensible representation of the sections
of a JPEG file as a collection of structures: quanti-
zation and huffman code tables, image data buffers,
comment buffers, and so on. Actually de-compressing
the huffman-coded image data and running an in-
verse discrete cosine transform to get the original im-
age is up to the developer of the image manipulation
software. If the uncompressed data itself has a com-
plicated dependently typed structure, one may well
want to use a separate BLT specification to interpret
the uncompressed data. Incorporating arbitrary data
transforms is beyond the scope of our language, how-
ever.

The second reason is also a completely valid de-
sign goal and is why packet filters exist. Sometimes
you simply need to check a few bits in a byte stream
and forward that chunk of data to someone who will
do something sensible with it. Full re-tagging and
re-packing of the data is inefficient for such tasks.

The final reason we have offered for using the tar-
get programming language is bad for a couple of rea-
sons: (1) Using the target language makes our specifi-
cations unnecessarily dependent upon that program-
ming language. Suddenly you need five specifications
for “The” JPEG format: one each for C++4, Java,
SML, Python, and Ada. (2) The models of arith-
metic offered by target languages are often poorly
suited for writing low-level parsers. Let us illustrate
this point by means of a few examples.

struct

opcode : u8 where opcode == 0x28,

tcurts

Arithmetic Example 1

Here, we might venture to say that casting the
phrase “opcode == 0x28” into the target language
poses no ambiguity at all. There is a subtle ques-
tion here, though, which is: what type is the constant
0x28 ¢ Though it is straight-forward here to say “it’s
a u8, as that’s what we’re comparing it with,” what
about our next example?

struct
opcode : ul6/be where

opcode < 0x10000,

tcurts

Arithmetic Example 2

If we use the logic from our first example here,
we would cast 0x10000 to zero, making the condi-
tion always false, where it should be always true. We
may want to alert the programmer that this particu-
lar example is probably a typo, since the expression
is always true, but quietly truncating a large integer
constant to zero is very bad behavior. A quick-and-
dirty solution to this example would be to do all op-
erations in a 32-bit machine word; but what about
our next example?

struct
pagesize : u8 where
(1 << pagesize) <= 16 * 1024,
npages : u8,
data : u8 list(npages *
(1 << pagesize))
tcurts

Arithmetic Example 3

While we could rephrase this where-clause as
pagesize < 15, this obfuscates what we are specify-
ing: page sizes are limited to 16 kilobytes. We want
BLT specifications to be easy to write and hard to get
wrong.

This example illuminates the underlying issue in
our arithmetic examples: overflow and underflow. So

how do C and SML handle exceptional arithmetic
conditions?

C quietly ignores integer integer overflow and un-
derflow. Further, there is a subtle ambiguity with
regards to arithmetic and the shifting expression
above—the results are implementation defined: the
first where-clause compiled by gcc would shift by
pagesize mod 32 on x86 and by pagesize mod 64
on PowerPC. If we are equating shifting to the left
with multiplying by powers of two, even mod 232,
both interpretations are egregiously wrong. There-
fore, letting our where-clause for pagesize be simply
an expression in C will rarely give us the result we
intended.

SML/NJ throws arithmetic exceptions whenever
an arithmetic expression overflows or underflows a
machine word. Unfortunately, whereas this makes
a straight embedding of arithmetic expressions into
SML/NJ’s native integer type a safer gambit than in
C, SML/NJ’s integers are only 31 bits wide. This
will not do when evaluating expressions with 32 bit
values.

Why is arithmetic overflow and underflow such a
big deal? Because these issues cause real bugs in real
parsers. The JPEG exploit in Microsoft’s GDI+.dll,
which allowed an attacker to run arbitrary code on a
user’s computer. exploited an integer underflow bug.
In section 5.10’s example of a re-interpreted type, we
see exactly how parsing went wrong: to get the length
of the comment field, we subtract two from an un-
signed 16-bit integer n. If we don’t remember to test
to check that n > 2, we may incorrectly think the
comment field very long indeed.

In BLT, we choose to solve these problems by re-
quiring all arithmetic expressions evaluate as though
they were performed with BIGNUMs, and by checking
that all lists are of non-negative length.

8.2 Integral and Boolean Expressions

In the table below we present our arithmetic and
boolean operators. The rows of the table are arranged
in order of precendence, with the lower rows binding
more strongly.

<> <=>= = I= IntCmp

NOT

AND BoolOps
OR

+ -

« /Y IntOps
|

<< >> BitwiseOps
&

Boolean and Integer Operations

The typing rules for these are as expected:

e1:7Z ey:7Z op €IntCm
! 2 P P S-INTCMmP
epopes:B
e1:B ex:B op € BoolOps
! 2 P P S-BooLOp
epopes: B
e1:7Z ey:7Z op € IntOps
! 2 P P S-INTOPS
ejopes:Z
e1:7Z ey:7Z op € BitwiseOps

S-B1TOPs
epopey:Z
In addition, certain arguments to these operators
will cause runtime errors. The problematic values fall
into two classes: arithmetic operators which do not
accept negative values n, and arithmetic operators
which do not accept 0:

/0 x2%0 n%zr xz%hn n<<x n>>zx
Arithmetic Arguments Causing Runtime
Errors

8.3 Comments

XXX figure this out later. Syntactic Issue.

8.4 Constants (Value Intro Forms)

8.4.1 Integer and Boolean Constants

As with all arithmetic expressions in BLT, arith-
metic constants are interpreted as though they were
BIGNUMs. We allow several syntactic forms for in-
teger constants. Binary constants are prefixed with
Ob, hexadecimal with Ox, and octal with 0. A 0 by
itself represents the number zero. Case does not mat-
ter. In addition, an underscore or period may occur
at any position between numerals past the base pre-
fix for easier readability. For instance, the following

are all legal renderings of the decimal number 42: 42,
0x2A, 0B_010.1010, 052.
The boolean constants are true and false.

8.4.2 Strings and Integer Lists

Strings and lists of integers are syntactic sugar so we
don’t need to write out a long sequence of u8 vari-
ables, each matching some integer.

Strings are simply lists of integers that are each at
most 255: suitable for comparing against sequences
of u8’s. XXX Figure out precise embedding later.
Syntactic Issue. We at least want ASCII strings to
be easy.

We also provide this form for integer list con-
stants: [5, 25, 24, 122].

8.5 Elimination Forms for Datatypes

e Equality of Integer Lists

e length(z) where z is a list

case e of FOO(v) => ejoo | BAR => epqy
(Union Elimination Form)

e1.lab (Record Elimination Form)
e1.(k) (k' item of a list)

XXX Do we want anything else? We don’t want
the complications of recursive functions, so we don’t
want to bother with cons, car, and cdr. What about
iteration: map, iter, forall, exists?

8.6 Variable and ¥ Type Names

Syntax:
([a-z]1 [A-Z1[1) ([a-z] [A-Z] [-_/'"1[0-91)+
XXX Say something about scope. ¥ type names
are shorthand. All top level?

9 U Type Distinguishability

Whenever we have an « list of unknown length, it
must be followed either by nothing (i.e., end of file),
or it must be followed by an item of type § which is
distinguishable from a.

Here we define inductively what it means for two
types « and 3 to be distinguishable. XXX

10

10 What zsn’t in BLT

It is as important to note what we have omitted from
BLT as what we have included. For instance, there
are no introduction forms for datatypes more com-
plicated than lists of integers. The only way values
of such types are introduced is by their being parsed.
We have also omitted recursive functions, and XXX?
indeed iteration of all sorts.

We also have very limited support for offsets into
a stream. This can be quite a limiting issue. How-
ever, we can get around the issue by parsing in stages.
XXX Insert example about reading in an ELF
Header (with dictionary) with a _parse func-
tion, and then using that data to skip to other
parts of the file and reading them with _parse
functions.

11 Bindings for C and SML
Related Work

Low-level parsing is an old problem, and there is a
wealth of literature on related problems.

Data-Structure Layout Languages: Qur prob-
lem is that of mediating between a standardized
format and a user’s programming language. In
this realm, a few languages stand out: XDR [19],
X.409/ASN.1 [14, ?], CSN.1 [12], Ada’s sublan-
guage for data representation [7], Flavor [4], and
DataScript [1].

XDR is general enough to provide an encoding
of a reasonable variety of data structures, but is not
general enough to encode alternate endian-ness, bit-
packing or type dependency which is not of the form
na™.

12

Ada has a beautiful sublanguage for specifying the
bit-level layout of data structures. Unfortunately, the
standard balks at dependent types, stating:

An implementation need not support rep-
resentation items containing nonstatic ex-
pressions. [7] §13.1.21

Which means “If you can figure out how to sup-
port this run-time dependent typing, great. We
can’t.”

DataScript and Flavor are both extensions to a
core language shared with BLT: (dependent) records,
unions, and lists (both bounded and unbounded).

Flavor takes a painfully dynamic approach, leav-
ing no way for the user to tell if certain fields were

parsed except by means of a runtime error. This is
equivalent to Java’s mistake of having all of its ob-
jects implicitly be object options. Flavor’s type spec-
ifications look more like the code of type parsers, full
of while and for loops. The consequent semantics
are bizarre: if a field is declared in a loop, then each
time the loop is passed the old value is discarded and
the variable is rebound to a new parsed value. These
constructs only make sense in the context that Fla-
vor specifications are littered with code of the target
language, as in Yacc- specifications.

As we are interested in standalone, reusable speci-
fications which provide round-trip data conversion to
statically-typed languages, Flavor simply will not do.

DataScript is much closer to our ideal language,
but it has poor support for dependent endianness,
requiring duplicate code for any field with variable
endianness.

Neither Flavor or DataScript has a formal defi-
nition. Further, both languages rely directly upon
the target programming language for evaluating their
arithmetic expressions, a bad practice we’'ve already
discussed.

Our work can be seen as a clean-up of DataScript,
providing it a more rigorous formalization XXX
make this true XXX, bindings for SML and
C XXX make this true XXX, and several
small extensions: re-interpreted types, bit fields
(and asbits bit fields), and the implicit and
dontcare qualifiers.

XXX X.409/ASN.1 and CSN.1

Packet Filtering: Packet filters are snippets of
code that match a network packet against a specific
pattern, and route them to an application [10, 3, 11,
5, 2]. Packet filters are typically written in a very
primitive language: a mix of boolean predicates over
values from the data stream and integer constants
and SHIFT instructions to accept a portion of the
stream. The literature on packet filtering is aimed
mainly at performance, safety, and runtime extensi-
bility.

The goals of packet filters are fast demultiplex-
ing, not round-trip transformation of data to a target
language. Therefore, packet filters are not concerned
with full type description, and none of them can ade-
quately deal with dependently typed binary formats.

The most interesting “packet filter” from our
point of view is PacketTypes of McCann and Chan-
dra [9]. PacketTypes provides a type system strik-
ingly similar to that of BLT for describing incoming
packets. We lump PacketTypes in with the packet fil-

11

tering literature simply because the authors stopped
short of using their type system for anything more
than recognizing packets.

PacketTypes has the interesting feature of allow-
ing types to be arranged in a refinement hierarchy
with overlays. For example one may specify two re-
finements of an IP packet — UDPinIP and TCPinIP. In
a sense, this is isomorphic to a “lazy sum” in which
the compiler keeps track of all of the refinements of
an IP packet and invokes a handler when it deter-
mines the most refined type. McCann and Chandra
go on to take advantage of this laziness by allow-
ing the dynamic insertion of type refinements intoa
running packet filter. This sort of behavior doesn’t
translate well to a language with a static type system
such as ML, but does provide an interesting approach
to the problem of backwards-compatible format ver-
sioning.

With the exception of runtime additions to the
type system, BLT and PacketTypes specify roughly
the same languages. PacketTypes does not account
for endianness, though, and has a slightly more re-
strictive notation for where-clauses. Therefore, BLT
can be seen as a logical extension of PacketTypes
which takes care of these issues and supports round-
trip conversion of data.

Marshalling or Stub Generation: Sun RPC is the
canonical example of marshalling [18]. Much as with
XDR, marshalling code is useful for mediating be-
tween a programming language’s data types and a
byte stream, but only when you don’t need to specify
what the byte stream looks like.

Parsing of Context Free Grammars by Bison and
Friends: We've mentioned how our language de-
scribes languages that are more and less than con-
text free: we only support a very restrictive form of
Kleene closure, and we can parse the language of ex-
pressions a”b"cd"™. One might argue that we could
use Bison’s semantic actions to capture the same sorts
of constraints we can capture with BLT. XXX In-
sert Example here of why this is horribly misguided,
and degenerates with dependent constructs to nasty
global variables and other cruft that makes the pro-
cess roughly equivalent to writing the parser by hand.

Lenses and the view-update problem: Our work
can be seen in terms of lenses as put forth by Ben-
jamin Pierce et al.[6] in their description of tree trans-
forms. Pierce’s Harmony project aims to solve the
view-update problem for data that comes with syn-
chronizing information encoded in an XML-style la-
belled tree form.

In terms of lenses, our second projection can be
thought of as a canonicl Abstract Type, and our ¥
types are the combinations of two lenses: one which
mediates between the bit-stream representation and
the second projection, and another between the ab-
stract type and the embedding into the user’s pro-
gramming language.

XXX We cannot claim that our lenses are “well-
behaved” since we have only a weaker form of the
PuTGET law known as the law for a couple of rea-
sons. The problem derives from our definition of
union:

Pattern Matching: XXX

Dependent and Refinement Types: XXX

Problems of Arithmetic: Arithmetic overflow is an
old problem, and yet most languages do not handle it
in a reliable way. Whether to raise an exception is up
to the implementation in C, Ada, Scheme, Ada and
Scheme encourage but do not require more sensible
implementationXXX Other Examples

SML/NJ chooses to raise exceptions for underflow
and overflow of native ints, and also offers infinite pre-
cision integers. XXX Other Examples Is this in the
language definition?

SmallTalk does all numeric computation with in-
finite precision integers, as do Common Lisp, Nickle,
XXX Other Examples

13 Conclusion

References

[1] BAack, G. Datascript — a specification and
scripting language for binary data. In Proc.
ACM Conf. on Generative Programming and
Component Engineering Proceedings (GPCE
2002) (October 2002), pp. 66-77.

[2] BAILEY, M. L., GorAL, B., PacELs, M. A,
AND PETERSON, L. L. PATHFINDER: A
pattern-based packet classifier. In Proceedings
of the First USENIX Symposium on Operating
Systems Design and Implementation (Monterey,
CA, November 1994), pp. 115-123.

[3] BEGEL, A., McCCANNE, S., AND GRAHAM,
S. L. BPF+. In SIGCOMM Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communication (Cam-
bridge, MA, August 1990), pp. 123-133.

12

[4] ELEFTHERIADIS, A., AND FANG, Y. Flavor: A
language for media representation. In Proceed-
ings of the Fifth ACM International Conference
on Multimedia (November 1997), pp. 1-9.

[5] ENGLER, D. R., AND KAASHOEK, M. F. DPF:
Fast, flexible message demultiplexing using dy-
namic code generation. In ACM SIGCOMM
Computer Communication Review, Conference
Proceedings on Applications, technologies, archi-
tectures and protocols for computer communica-
tions (August 1996), vol. 26.

[6] FOSTER, J. N., GREENWALD, M. B., MOORE,
J. T., PiErce, B. C., AND ScHMITT, A.
Combinators for bi-directional tree transforma-
tions: A linguistic approach to the view update
problem. In ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages
(POPL), Long Beach, California (2005). Ex-
tended version available as University of Penn-
sylvania technical report MS-CIS-03-08. Earlier
version presented at the Workshop on Program-
ming Language Technologies for XML (PLAN-
X), 2004.

[7] INTERMETRICS. Ada 95 Reference Manual: The
Language, The Standard Libraries. International
Standards Organization.

[8] MACROMEDIA, INC. Macromedia Flash (SWF)
file format specification, version 7.

[9] McCanN, P. J., aND CHANDRA, S. Packet
Types: Abstract specification of network pro-
tocol messages. In SIGCOMM Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communication (Stock-
holm, Sweden, August 2000), pp. 321-333.

McCANNE, S., AND JACOBSON, V. The BSD
packet filter: A new architecture for user-level
packet capture. In USENIX Technical Con-
ference Proceedings (San Diego, CA, November
1993), pp. 39-51.

Mogut, J., RasHID, R., AND ACCETTA, M.
The packet filter: An efficient mechanism for
user-level network code. In Proceedings of the
Eleventh ACM on Operating Systems Principles
(November 1987), pp. 39-51.

MouLy, M. CSN.1 Specification, Version 2,
1998.

[13]

[14]

[15]

[16]

PENNEBAKER, W. B., AND MITCHELL, J. L.
JPEG Still Image Data Compression Standard.
Chapman & Hall, 1993.

Porg, A. R. Encoding CCITT X.409 presenta-
tion transfer syntax. In ACM SIGCOMM Com-
puter Communication Review (October 1984).

SECURITY Focus.
2002-2005.

Ethereal vulnerabilities,

SECURITY Focus, MACFARLANE, C., AND DE-
BAGGIS, N. Microsoft GDI+ library JPEG
segment length integer underflow vulnerability,
2004.

13

[17]

[18]

[19]

[20]

SECURITY FocCcus, AND SOLAR DESIGNER.
Netscape communicator JPEG-comment heap
overwrite vulnerability, 2000.

SRINIVASAN, R. RFC 1831: RPC: Remote pro-
cedure call protocol specification version 2.

SRINIVASAN, R. RFC 1832: XDR: External data
representation standard.

X CONSORTIUM, INC. X Window System: Vol-
ume Zero, X Protocol Reference Manual for X11
Version 4, Release 6. O’Reilly & Associates,
Inc., 1995.

