Generators, Relations, And The Free Group
 BSM Topology, Spring 2002
 Eger David

Abstract

Groups are sometimes defined in terms of generators and relations. By generators, we mean a list of symbols $g_{1}, g_{2}, \cdots g_{n}$, along, implicitly, with another set of symbols $g_{1}^{-1}, g_{2}^{-1}, \cdots g_{n}^{-1}$. From these symols we can form finite strings which we call words. We assume that any string of the form $g_{i} g_{i}^{-1}$ or $g_{i}^{-1} g_{i}$ is equivalent to the empty word, and that any relation provided is equivalent to the empty word, which we denote 1 , as it will be our group identity. We say that a word w_{1} is equivalent to a word w_{2} if w_{1} can be transformed into w_{2} in a finite number of insertions or deletions of syllables equivalent to the empty word. When we define a group by generators and relations, the elements of the group are the equivalence classes of words, and group multiplication is string concatenation. That this definition provides a group structure is trivial.

Examples of generator-relation presentations of groups:
$\left\langle g_{1}, g_{2}: g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=1\right\rangle$ is a presentation of the group $\mathbb{Z} \times \mathbb{Z}$
$\left\langle g_{1}: g_{1} g_{1} g_{1}=1\right\rangle$ is a presentation of \mathbb{Z}_{3}.
The general word problem, that is, showing if two words are equivalent given an arbitrary presentation, is known to be unsolvable. However, in this paper, we show that in the very special case of the Free Group on n elements, defined in terms of generators and relations, showing whether two words are equivalent is trivial. We conclude the paper with the result that almost every Free Group is not Abelian.

For a group with the presentation

$$
\left\langle g_{1}, g_{2}, \cdots, g_{k}: r_{1}=1, r_{2}=1, \cdots, r_{l}=1\right\rangle
$$

The two types of allowed transformatins of one word into an equivalent word are (1) the insertion or deletion of a relation r_{i} and (2) the insertion or deletion of a basic pair, that is, a syllable of the form $f_{i} f_{i}^{-1}$ or $f_{j}^{-1} f_{j}$. I will use the words reduction and deletion interchangeably, and I will use the adjective basic to refer to the insertion or deletion of basic pairs.

Let us say that a word is in reduced form if there are no occurences of $g_{i} g_{i}^{-1}, g_{i}^{-1} g_{i}$, or r_{j} in the word. In general, a word may have more than one reduced form, depending upon how we reduce it. For example, if our group is

$$
\left\langle g_{1}, g_{2}: g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=1\right\rangle
$$

Then we can reduce the word $g_{1}^{-1} g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$ to either $g_{1}^{-1} g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=g_{2} g_{1} g_{2}^{-1}$ or $g_{1}^{-1} g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=g_{2}^{-1}$

Determining whether two words are equivalent is known to be unsolvale. However, in the very special case of the Free Group F_{n}, which we define here as having n generators and no relations, the only allowed transformations are basic transformations. I claim that any sequence of basic reductions which produces a word in reduced form will produce the same word; Therefore, we can define a function $\operatorname{Red}(w): \Sigma^{*} \rightarrow \Sigma^{*}$ so that $\operatorname{Red}(w) \sim w$ and $\operatorname{Red}(w)$ is the reduced form of w. In other words, each equivalence class of words of the free group can be associated with the unique reduced word in that equivalence class.

Let us define the left-most reduction of a word $w=a_{1} a_{2} a_{3} \cdots a_{m}$ as the reduction which is achieved by the following algorithm:

```
LeftMost(w)
    for(i=1; i < length(w); i=i+1) {
        if w(i)w(i+1) is of the form fiffi
            delete w({i,i+1}); let i = 0
    }
```

In our proofs below, it is important to distinguish two notations for the word being reduced. The first notation refers to the initial composition of the word, denoted $a_{1} a_{2} a_{3} \cdots a_{m}$. Therefore, if w begins as $a_{1} a_{2} a_{3} a_{4}$, then after the first reduction, it may appear as $a_{1} a_{4}$. On the other hand, $w(i)$ refers to the letter at position i, at the present moment in the algorithm. So after the first reduction, $w(2)=a_{4}$. For rigor, we might define $w_{t}(i)$, where t is how many reductions have been applied to w so far; however, if there is no case of confusion, we will retain the simpler notation above.

Since at each iteration, either i increases, or the length of w decreases by 2 and i is set to 1 , this algorithm will terminate within m^{2} steps. Further, after the last reduction, the algorithm ensures that the word that remains is in reduced form. At each step, we only use the allowed reduction rules, so LeftMost $(w) \sim w$.

Theorem If R is any sequence of basic reductions $R_{1}, R_{2} \cdots R_{r}$ of a word w leaving a reduced word $R(w)$, then $R(w)=\operatorname{LeftMost}(w)$
proof: Let us assume that for all words w of length l less than k, that the proposition is true. We claim, then, that for any $R=R_{1}, R_{2} \cdots R_{r}$, that $R\left(w_{k}\right)=$ LeftMost $\left(w_{k}\right)$. If w_{k} is already in reduced form, then certainly $R\left(w_{k}\right)=$ $\operatorname{LeftMost}\left(w_{k}\right)=w_{k}$. Otherwise, let $a_{f} a_{f+1}$ be the first pair in w_{k} deleted by R, resulting in the word $R_{1}\left(w_{k}\right)$. I claim that

$$
\operatorname{LeftMost}\left(w_{k}\right)=\operatorname{LeftMost}\left(R_{1}\left(w_{k}\right)\right)=R_{r}\left(R_{r-1}\left(\cdots R_{2}\left(R_{1}\left(w_{k}\right)\right)\right)\right)=R\left(w_{k}\right)
$$

The second equality is true by the inductive hypothesis, the third by tautology. The only thing left to prove then, is that LeftMost $\left(w_{k}\right)=\operatorname{LeftMost}\left(R_{1}\left(w_{k}\right)\right)$.
Now LeftMost $\left(w_{k}\right)$ is a reduction of w_{k} consisting of a sequence of basic reductions $L_{1}, L_{2}, \cdots L_{m}$.
Case I: If there is an L_{i} which deletes $a_{f} a_{f+1}$ from w_{k}, then it doesn't matter if we "lift" L_{i} to the front of the list, reordering the basic reductions $L^{\prime}=$ $L_{i}, L_{1}, L_{2}, \cdots, L_{i-1}, L_{i+1}, \cdots L_{m}$. The only reasons that one reduction L_{i} would not be able to happen earlier than another reduction L_{j} are if (1) L_{i} and L_{j} delete the same element a_{k}, or (2) L_{i} depends on L_{j} in the sense that, if L_{i} deletes the letters $a_{m} a_{n}$, then L_{j} deletes the letters $a_{r} a_{s}$ where $m<r<s<n$. The first case is not a problem since $L_{1} \cdots L_{m}$ each delete different letters. The second case is also not a problem since there are no letters between a_{f} and a_{f+1}.
Now, L^{\prime} results in the same reduced word as $\operatorname{LeftMost}\left(w_{k}\right)$ since they each consist of the same steps, that is, there is an $L_{j}{ }^{\prime} \in L^{\prime}$ that deletes $a_{p} a_{q}$ from w if and only if there is an $L_{k} \in \operatorname{LeftMost}\left(w_{k}\right)$ that deletes $a_{p} a_{q}$ from w. So, since $L_{1}{ }^{\prime}\left(w_{k}\right)=R_{1}\left(w_{k}\right)=w_{k-2}$, where length $\left(w_{k-2}\right)<k$ then

$$
\begin{aligned}
\operatorname{LeftMost}\left(w_{k}\right) & =L^{\prime}\left(w_{k}\right)=L_{m}{ }^{\prime}\left(L_{m-1}{ }^{\prime}\left(\cdots L_{2}{ }^{\prime}\left(w_{k-2}\right)\right)\right) \\
& =\operatorname{LeftMost}\left(w_{k-2}\right)=R_{r}\left(R_{r-1}\left(\cdots R_{2}\left(w_{k-2}\right)\right)\right)=R\left(w_{k}\right)
\end{aligned}
$$

Case II: There is no L_{i} that deletes $a_{f} a_{f+1}$ from w_{k}.
At some point, at least one of $a_{f} a_{f+1}$ is deleted by LeftMost $\left(w_{k}\right)$ because LeftMost $\left(w_{k}\right)$ leaves a reduced word. Therefore, the only other option is that there is an L_{i} which deletes the pair $a_{d} a_{f}$. However, I claim that this too, is not a problem. At time i, w looks something like $w(1) w(2) \cdots a_{d} a_{f} a_{f+1} \cdots w(l)$. Both $a_{d} a_{f}$ and $a_{f} a_{f+1}$ are basic pairs, which means that $a_{d}=a_{f+1}=a_{f}^{-1}$. So, deleting $a_{d} a_{f}$ or deleting $a_{f} a_{f+1}$ both leave $w(1) w(2) \cdots a_{f}^{-1} \cdots w(l)$. So without the loss of generality, we can assume that LeftMost $\left(w_{k}\right)$ does indeed delete $a_{f} a_{f+1}$, leaving us in the previous case.

Corollary In $F_{n}=\left\langle f_{1}, f_{2}, \ldots f_{n}:\right\rangle$, if w_{1} and w_{2} are reduced words with different spellings, then $w_{1} \nsucc w_{2}$. (And therefore as group elements, $w_{1} \neq w_{2}$)
proof: I will show that for each word w and each basic insertion or deletion p, we have $\operatorname{Red}(p(w))=\operatorname{Red}(w)$. In the case of a deletion p_{d}, then $\operatorname{Red}\left(p_{d}(w)\right)$ and $\operatorname{Red}(w)$ are two reductions of w. The case of insertion p_{i} is handled with the fact that p_{i} has an inverse $p_{i}^{-1}=p_{d_{i}}$, and since $\operatorname{Red}(w)=\operatorname{Red}\left(p_{d_{i}}\left(p_{i}(w)\right)\right)$ and $\operatorname{Red}\left(p_{i}(w)\right)$ are two reductions of $p_{i}(w)$. In each case, by the previous theorem equality holds.
So, if R is any sequence of basic manipulations of w_{1}, then by induction $\operatorname{Red}\left(R\left(w_{1}\right)\right)=\operatorname{Red}\left(w_{1}\right)$. Then if w_{1} and w_{2} are reduced words and there is some sequence of basic manipulations so that $R\left(w_{1}\right)=w_{2}$, then it follows that w_{1} and w_{2} must have the same spelling.

Corollary $F_{n}=\left\langle f_{1}, f_{2}, \ldots f_{n}:\right\rangle$ is not Abelian when $n>1$.
proof: $\quad f_{1} f_{2}$ and $f_{2} f_{1}$ are reduced words with different spellings, and therefore distinct.

