
Generators, Relations, and the
Free Group

BSM Topology, Spring 2002
Eger David

Abstract

Groups are sometimes defined in terms of generators and relations. By
generators, we mean a list of symbols g1, g2, · · · gn, along, implicitly,
with another set of symbols g−1

1 , g−1
2 , · · · g−1

n . From these symols we can
form finite strings which we call words. We assume that any string of
the form gig

−1
i or g−1

i gi is equivalent to the empty word, and that any
relation provided is equivalent to the empty word, which we denote 1,
as it will be our group identity. We say that a word w1 is equivalent
to a word w2 if w1 can be transformed into w2 in a finite number of
insertions or deletions of syllables equivalent to the empty word. When
we define a group by generators and relations, the elements of the group
are the equivalence classes of words, and group multiplication is string
concatenation. That this definition provides a group structure is trivial.

Examples of generator-relation presentations of groups:〈
g1, g2 : g1g2g

−1
1 g−1

2 = 1
〉

is a presentation of the group Z × Z

〈g1 : g1g1g1 = 1〉 is a presentation of Z3.

The general word problem, that is, showing if two words are equivalent
given an arbitrary presentation, is known to be unsolvable. However,
in this paper, we show that in the very special case of the Free Group
on n elements, defined in terms of generators and relations, showing
whether two words are equivalent is trivial. We conclude the paper
with the result that almost every Free Group is not Abelian.



For a group with the presentation

〈g1, g2, · · · , gk : r1 = 1, r2 = 1, · · · , rl = 1〉

The two types of allowed transformatins of one word into an equivalent word are (1)
the insertion or deletion of a relation ri and (2) the insertion or deletion of a basic pair,
that is, a syllable of the form fif

−1
i or f−1

j fj. I will use the words reduction and deletion
interchangeably, and I will use the adjective basic to refer to the insertion or deletion of
basic pairs.

Let us say that a word is in reduced form if there are no occurences of gig
−1
i , g−1

i gi,
or rj in the word. In general, a word may have more than one reduced form, depending
upon how we reduce it. For example, if our group is〈

g1, g2 : g1g2g
−1
1 g−1

2 = 1
〉

Then we can reduce the word g−1
1 g1g2g

−1
1 g−1

2 to either g−1
1 g1g2g

−1
1 g−1

2 = g2g1g
−1
2 or

g−1
1 g1g2g

−1
1 g−1

2 = g−1
2

Determining whether two words are equivalent is known to be unsolvale. However, in
the very special case of the Free Group Fn, which we define here as having n generators
and no relations, the only allowed transformations are basic transformations. I claim that
any sequence of basic reductions which produces a word in reduced form will produce the
same word; Therefore, we can define a function Red(w) : Σ∗ → Σ∗ so that Red(w) ∼ w
and Red(w) is the reduced form of w. In other words, each equivalence class of words of
the free group can be associated with the unique reduced word in that equivalence class.

Let us define the left-most reduction of a word w = a1a2a3 · · · am as the reduction
which is achieved by the following algorithm:

LeftMost(w)
for(i=1; i < length(w); i=i+1) {

if w(i)w(i + 1) is of the form fif
−1
i or f−1

j fj

delete w({i, i + 1}); let i = 0

}
In our proofs below, it is important to distinguish two notations for the word be-

ing reduced. The first notation refers to the initial composition of the word, denoted
a1a2a3 · · · am. Therefore, if w begins as a1a2a3a4, then after the first reduction, it may
appear as a1a4. On the other hand, w(i) refers to the letter at position i, at the present
moment in the algorithm. So after the first reduction, w(2) = a4. For rigor, we might
define wt(i), where t is how many reductions have been applied to w so far; however, if
there is no case of confusion, we will retain the simpler notation above.

1



Since at each iteration, either i increases, or the length of w decreases by 2 and i is
set to 1, this algorithm will terminate within m2 steps. Further, after the last reduction,
the algorithm ensures that the word that remains is in reduced form. At each step, we
only use the allowed reduction rules, so LeftMost(w) ∼ w.

Theorem If R is any sequence of basic reductions R1, R2 · · ·Rr of a word w leaving a
reduced word R(w), then R(w) = LeftMost(w)

proof: Let us assume that for all words w of length l less than k, that the proposi-
tion is true. We claim, then, that for any R = R1, R2 · · ·Rr, that R(wk) =
LeftMost(wk). If wk is already in reduced form, then certainly R(wk) =
LeftMost(wk) = wk. Otherwise, let afaf+1 be the first pair in wk deleted
by R, resulting in the word R1(wk). I claim that

LeftMost(wk) = LeftMost(R1(wk)) = Rr(Rr−1(· · ·R2(R1(wk)))) = R(wk)

The second equality is true by the inductive hypothesis, the third by tautology.
The only thing left to prove then, is that LeftMost(wk) = LeftMost(R1(wk)).

Now LeftMost(wk) is a reduction of wk consisting of a sequence of basic re-
ductions L1, L2, · · ·Lm.

Case I: If there is an Li which deletes afaf+1 from wk, then it doesn’t matter
if we “lift” Li to the front of the list, reordering the basic reductions L′ =
Li, L1, L2, · · · , Li−1, Li+1, · · ·Lm. The only reasons that one reduction Li would
not be able to happen earlier than another reduction Lj are if (1) Li and Lj

delete the same element ak, or (2) Li depends on Lj in the sense that, if Li

deletes the letters aman, then Lj deletes the letters aras where m < r < s < n.
The first case is not a problem since L1 · · ·Lm each delete different letters. The
second case is also not a problem since there are no letters between af and
af+1.

Now, L′ results in the same reduced word as LeftMost(wk) since they each
consist of the same steps, that is, there is an Lj

′ ∈ L′ that deletes apaq from
w if and only if there is an Lk ∈ LeftMost(wk) that deletes apaq from w. So,
since L1

′(wk) = R1(wk) = wk−2, where length(wk−2) < k then

LeftMost(wk) = L′(wk) = Lm
′(Lm−1

′(· · ·L2
′(wk−2)))

= LeftMost(wk−2) = Rr(Rr−1(· · ·R2(wk−2))) = R(wk)

2



Case II: There is no Li that deletes afaf+1 from wk.

At some point, at least one of afaf+1 is deleted by LeftMost(wk) because
LeftMost(wk) leaves a reduced word. Therefore, the only other option is that
there is an Li which deletes the pair adaf . However, I claim that this too, is not
a problem. At time i, w looks something like w(1)w(2) · · · adafaf+1 · · ·w(l).
Both adaf and afaf+1 are basic pairs, which means that ad = af+1 = a−1

f .

So, deleting adaf or deleting afaf+1 both leave w(1)w(2) · · · a−1
f · · ·w(l). So

without the loss of generality, we can assume that LeftMost(wk) does indeed
delete afaf+1, leaving us in the previous case.

Corollary In Fn = 〈f1, f2, . . . fn :〉, if w1 and w2 are reduced words with different spellings,
then w1 6∼ w2. (And therefore as group elements, w1 6= w2)

proof: I will show that for each word w and each basic insertion or deletion p, we
have Red(p(w)) = Red(w). In the case of a deletion pd, then Red(pd(w)) and
Red(w) are two reductions of w. The case of insertion pi is handled with the
fact that pi has an inverse p−1

i = pdi
, and since Red(w) = Red(pdi

(pi(w))) and
Red(pi(w)) are two reductions of pi(w). In each case, by the previous theorem
equality holds.

So, if R is any sequence of basic manipulations of w1, then by induction
Red(R(w1)) = Red(w1). Then if w1 and w2 are reduced words and there
is some sequence of basic manipulations so that R(w1) = w2, then it follows
that w1 and w2 must have the same spelling.

Corollary Fn = 〈f1, f2, . . . fn :〉 is not Abelian when n > 1.

proof: f1f2 and f2f1 are reduced words with different spellings, and therefore distinct.

3


